Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Planarity of heteroaryldithiocarbazic acid derivatives showing tuberculostatic activity. III. Mono- and diesters of 3-(pyrazin-2-ylcarbonyl)dithiocarbazic acid ${ }^{1}$

Małgorzata Szczesio, ${ }^{\text {a }}$ Andrzej Olczak, ${ }^{\text {a }}$ Jolanta Gołka, ${ }^{\text {a }}$ Katarzyna Gobis, ${ }^{\text {b }}$ Henryk Foks ${ }^{\text {b }}$ and Marek L. Główka ${ }^{\text {a* }}$
${ }^{\text {a }}$ Institute of General and Ecological Chemistry, Technical University of Łódź, Poland, and ${ }^{\text {b }}$ Department of Organic Chemistry, Medical University of Gdańsk, Poland Correspondence e-mail: marekglo@p.lodz.pl

Received 25 March 2011
Accepted 6 June 2011
Online 17 June 2011
Methyl 2-(pyrazin-2-ylcarbonyl)hydrazinecarbodithioate, $\mathrm{C}_{7} \mathrm{H}_{8}-$ $\mathrm{N}_{4} \mathrm{OS}_{2},(E 1), N^{\prime}$-[bis(methylsulfanyl)methylidene]pyrazine-2carbohydrazide, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}_{2},(F 1), N^{\prime}$-[bis(methylsulfanyl)-methylidene]-6-methoxypyrazine-2-carbohydrazide, $\mathrm{C}_{9} \mathrm{H}_{12}$ $\mathrm{N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$, (F2), and methyl 1-methyl-2-(pyrazin-2-ylcarbonyl)hydrazinecarbodithioate, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}_{2}$, (G1), can be considered as derivatives of classical (thio)amide-type tuberculostatics, and all are moderately active against Mycobacterium tuberculosis. This study was undertaken in a search for relationships between activity and specific intramolecular interactions, especially conjugations and hydrogen-bond contacts, and the molecular structures were compared with respective amine analogues, also active against the pathogen. Despite the differences between the amine and carbonyl groups with opposite functions in the hydrogen bond, the two types of structure show a surprisingly similar planar geometry, mostly due to the conjugations aided by the bifurcated intramolecular hydrogen-bond contact between the $\mathrm{N}-\mathrm{H}$ group of the central hydrazide group as donor and a pyrazine N atom and an S atom of the dithio function as acceptors. Planarity was suggested to be crucial for the tuberculostatic activity of these compounds. The N-methylated derivative (G1) showed a significant twist at the $\mathrm{N}-\mathrm{N}$ bond [torsion angle $\left.=-121.9(3)^{\circ}\right]$ due to the methyl substitution, which precludes an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ contact and the planarity of the whole molecule. Nonetheless, the compound shows moderate tuberculostatic activity.

Comment

For many years, tuberculosis was considered a disease of the past, limited mainly to poor countries which could not afford

[^0]expensive treatment, and this led to decreased interest in searching for more effective drugs. However, a more recent rise in mortality rates and the spread of the disease in developed countries, attributed to the emergence of multi-drugresistant strains, have changed this attitude. The search for new lead compounds was continued by several groups, including that of Foks (Foks et al., 2000; Gobis, Foks, Zwolska \& Augustynowicz-Kopeć, 2006; Gobis, Foks, Żuralska \& Kędzia, 2006), who synthesized several chemical classes of potential tuberculostatic agents, in particular those containing either pyrazin-2-yl-carbonimidoyldithiocarbazic acid esters, heteroaroylcarbonimidoyldithiocarbazate or heteroaroyldithiocarbazate systems. The compounds comprise molecular features present in the classical amide-type tuberculostatics, in particular heteroaroyl, amide and thioacid functions, such as in pyrazinamid, isoniazid and ethionamid (see Scheme 1), which act through the formation of a covalent adduct with nicotinamide adenine dinucleotide (Wang et al., 2007).

Ethionamid

Scheme 1

Our earlier crystallographic studies of selected representatives of 3-[amino(pyrazin-2-yl)methylidene]thiocarbazic acid esters (see Scheme 2, formula A) showed that all of them maintained planarity of the whole molecule, except for the terminal aliphatic substituents (Główka et al., 2005; Olczak et al., 2007; Orlewska et al., 2001). The planarity observed in these structures was caused by extensive conjugation aided by a bifurcated intramolecular hydrogen-bond contact between the protonated atom N3 as a donor and two acceptors. One acceptor was a negatively charged S atom and the other was an ortho-positioned N atom of a pyrazine or pyridine ring on the other side of the donor (Scheme 2, formula A). The analysis of these data resulted in a working hypothesis that planarity of the molecules is a prerequisite for their tuberculostatic activity (Orlewska et al., 2001).

Next, we showed that similar planarity was maintained in compounds lacking an H atom at N 3 , such as the dithioesters (formula B in Scheme 2), due to conjugation, and, except in thioesters (formula A), an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ contact was maintained between the same ortho N atom of the reversed pyridine (or pyrazine) ring as acceptor and the N5 amine group as donor. The overall planarity was lost only in
the case of N 2 substitution in an appropriate monoester (formula C in Scheme 2) (Olczak et al., 2011).

A

C

G
Scheme 2

The compounds described here represent both S-monothioesters $[(E 1)$ and $(G 1)]$ and S, S^{\prime}-dithioesters $[(F 1)$ and (F2)] of heteroaroyldithiocarbazic acids (see Scheme 3 and Figs. 1-4), in which an aryl- $\mathrm{C}\left(\mathrm{NH}_{2}\right)=\mathrm{N}$ - function present in the former study (Olczak et al., 2011) has been replaced by a 2-pyrazine- $\mathrm{C}(\mathrm{O})-\mathrm{NH}$ - function. Thus, the compounds may be considered derivatives of the well known tuberculostatic pyrazinamid (Scheme 1). Despite the significant differences between these compounds and their amine analogues A, B and C (Scheme 2), we supposed that, due to the presence of an H atom at N 3 in compounds (E1), (F1) and (F2), an analogous intramolecular hydrogen-bond contact will be formed as in the $\mathrm{N}-\mathrm{H}$ heteroarylcarbamidoyl hydrazinium cation (compound A in Scheme 2). As a result, the molecules should be planar and the compounds may show similar antibacterial activity.

(E1)

(F1)

(G1)

(F2)

Scheme 3
In addition, we included in this study compound (G1) (with a methyl substituent at atom N 2), which was unable to maintain planarity of the whole molecule due to spatial

Figure 1
The molecular structure of ($E 1$), showing the atom-numbering scheme. Intermolecular hydrogen bonds determining the packing of the molecules in the crystal structure are indicated as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The molecular structure of $(F 1)$, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3
The molecular structure of $(F 2)$, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
repulsion between this methyl group and the carbonyl group (see Scheme 2). As the compound showed some tuberculostatic activity, it was important to examine changes in its molecular structure. The question concerning planarity could

Figure 4
The molecular structure of (G1), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
not be answered by simple inspection of the Cambridge Structural Database (CSD, Version 5.32; Allen, 2002), as among about 20 structures comprising esters of heteroaroyldithiocarbazic acid, N 2 -substituted derivatives are not present. Structures in which the N atom is incorporated into the pyrazine or pyridine ring at the ortho position, thus playing an important role of acceptor in an $\mathrm{N} 3-\mathrm{H} \cdots \mathrm{N}($ aryl $)$ intramolecular hydrogen-bond contact, are similarly absent.

As we expected, the molecules of compounds ($E 1$), ($F 1$) and $(F 2)$ are planar except for the terminal ester group, while the molecule of (G1) shows a twist at the $\mathrm{N}-\mathrm{N}$ bond (Fig. 4) caused by spatial repulsion introduced by the methyl group at N2. Thus, we suppose that the main factor responsible for planarity is conjugation from the aryl ring to the thio group. Conjugation along the $\mathrm{C} 1=\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 41$ chain in $(F 1)$ and $(F 2)$, or along the $\mathrm{S}=\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 41$ chain in $(E 1)$, is confirmed by both the values of the respective torsion angles in these fragments, all being close to 180°, and the shortening of the formally single bonds $\mathrm{N} 3-\mathrm{C} 4$ and $\mathrm{C} 4-\mathrm{C} 41$ (Table 5).

Due to the overall planarity of the molecules of (E1), (F1) and ($F 2$), there are two short intramolecular hydrogen-bond contacts, both with the $\mathrm{N} 3-\mathrm{H}$ group as the donor (see Scheme 2 and Tables 1-4). The first contact, N3$\mathrm{H} \cdots \mathrm{N}$ (pyrazine), is observed in all compounds studied here having an $\mathrm{N} 3-\mathrm{H}$ group, including (G1). The $\mathrm{H} \cdots \mathrm{N}$ distances and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angles are in the ranges $2.21-2.28 \AA$ and $107-$ 110°, respectively (Table 6). Similar contacts are observed in N -substituted picolinamides found in the CSD, i.e. 2.15-2.32 \AA and $100-116^{\circ}$. The other intramolecular contact is that of N3$\mathrm{H} \cdots \mathrm{S}$, with $\mathrm{H} \cdots \mathrm{S}$ distances between 2.42 and $2.55 \AA$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{S}$ angles between 108 and 113° (Table 6). The values agree well with those found in similar molecules in the CSD (2.37-2.61 \AA and $107-113^{\circ}$). The exception is structure ($G 1$), in which substitution at atom N2 twists the molecule (see Scheme 2) and makes an intramolecular N3-H \cdots S contact impossible.

There are some doubts concerning the structural significance of these contacts (Table 6), mostly due to the commonly accepted view that hydrogen bonds with $D-\mathrm{H} \cdots A$ angles below 120° do not contribute substantially to the stabilization energy of the structure (Wood et al., 2009). However, the value

Figure 5
The intermolecular hydrogen-bond contact (dotted line) of (F1) determining the packing of the molecules in the crystal structure. [Symmetry code: (i) $x-1, y, z$.]
of 120° refers to intermolecular hydrogen bonds, while in this study we are concerned with intramolecular systems. In the crystallographic literature, arrangements similar to that formed by the $\mathrm{N} 3-\mathrm{H} \cdots \mathrm{N}$ contact (i.e. five-membered ring motifs) were discussed by Bilton et al. (2000) and Galek et al. (2010), who found for them a probability of formation of over 70% and an average hydrogen-bond angle of only 109°. Less is known about $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ arrangements similar to those present in the structures described in this study. However, it seems from our data (Table 6), and from a couple of examples comprising a five-membered intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ motif which were found in the CSD, that $\mathrm{N} 3-\mathrm{H} \cdots \mathrm{S}$ contacts are geometrically less stressed than $\mathrm{N} 3-\mathrm{H} \cdots \mathrm{N}$ ones. Consequently, we believe that both the $\mathrm{N} 3-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N} 3-\mathrm{H} \cdots \mathrm{S}$ close contacts observed in this study may be considered intramolecular resonance-assisted hydrogen bonds of some structural significance. The bonds aid conjugation along the main molecular chain to maintain planarity of the whole molecule, except for the terminal substituents of the ester group.

The molecular packing in $(E 1),(F 1)$ and $(F 2)$ is determined mainly by their planarity (Fig. 1 and Figs. 5-6) and relatively weak intermolecular hydrogen bonds. In the diesters (F1) and (F2), there is only one weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction in each structure. In $(F 1), \mathrm{C} 44-\mathrm{H} \cdots \mathrm{O} 5(x-1, y, z)$ hydrogen bonds join the molecules into infinite $C(7)$ chains parallel to the [100] direction, while in ($F 2$) the molecules form dimers $-R_{2}^{2}(10)$ rings according to the graph-set definition of Bernstein et al. (1995) - through C46-H $\cdots \mathrm{O} 5\left(-x+1, y, \frac{3}{2}-z\right)$ hydrogen bonds. In ester ($E 1$), which comprises one hydrogen-bond donor group, $\mathrm{N} 2-\mathrm{H}$, in each of the three independent molecules, the intermolecular interactions are more complicated. Molecules B and C are connected by $\mathrm{N} 2 B-\mathrm{H} \cdots \mathrm{O} 5 C$ and

Figure 6
The intermolecular hydrogen-bond contacts (dotted lines) of (F2) determining the packing of the molecules in the crystal structure. [Symmetry code: (i) $-x+1, y,-z+\frac{3}{2}$.]

Figure 7
The intermolecular hydrogen-bond contacts (dotted lines) of (G1) determining the packing of the molecules in the crystal structure. [Symmetry codes: (i) $x-1, y, z$; (ii) $x-1, y-1, z$.]
$\mathrm{N} 2 C-\mathrm{H} \cdots \mathrm{O} 5 B$ hydrogen bonds (Table 1), joining molecules into approximately coplanar dimers in which $R_{2}^{2}(10)$ rings are present. Molecules A and B are connected into asymmetric dimers (Fig. 1) by $\mathrm{C} 44 B-\mathrm{H} \cdots \mathrm{O} 5 A$ and $\mathrm{N} 2 A-\mathrm{H} \cdots \mathrm{N} 45 B$ hydrogen bonds, forming $R_{2}^{2}(8)$ rings. In the N^{\prime}-methylated ester (G1), one weak intermolecular $\mathrm{C} 43-\mathrm{H} \cdots \mathrm{O} 5(x-1$, $y-1, z$) hydrogen bond is observed (Table 4). The bonds join the molecules into infinite $C(6)$ chains running parallel to the [110] direction. In addition, an intermolecular N3-H3 \cdots $\mathrm{S} 1(x-1, y, z)$ short contact may be considered a weak hydrogen bond (Fig. 7).

Experimental

The syntheses of the title compounds were described by Foks et al. (2000) for ($E 1$) and (F1), by Gobis, Foks, Zwolska \& AugustynowiczKopeć (2006) for (G1), and by Gobis, Foks, Żuralska \& Kędzia (2006) for (F2). Single crystals of compounds (E1), (F1), (F2) and (G1) suitable for X-ray diffraction were obtained from chloroformethanol ($1: 1 \mathrm{v} / v$), dioxane, ethanol and ethanol solutions, respectively, by slow evaporation of the solvents at room temperature.

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},^{\circ}\right)$ for (E1).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2 $A-\mathrm{H} 2 A \cdots \mathrm{~N} 45 B$	0.86	2.13	$2.987(2)$	174
C44B-H44B \cdots O5A	0.93	2.36	$3.061(2)$	132
N2 $B-\mathrm{H} 2 B \cdots$ O5C	0.86	1.94	$2.790(2)$	172
N2C-H2C O5B	0.86	2.00	$2.850(2)$	170

Compound (E1)

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{OS}_{2}$
$\gamma=73.968(4)^{\circ}$
$M_{r}=228.29$
Triclinic, $P \overline{1}$
$a=7.2326$ (3) £
$b=12.7207$ (4) \AA
$c=17.7516$ (5) \AA
$\alpha=77.877(3)^{\circ}$
$\beta=79.096(3)^{\circ}$

Data collection

Kuma KM-4 CCD area-detector diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\text {min }}=0.876, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.094$
$S=1.00$
6187 reflections

Compound (F1)

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}_{2}$
$M_{r}=242.32$
Monoclinic, $P 2_{1} / c$
$a=7.8332$ (2) A
$b=21.0883$ (4) \AA
$c=7.3920$ (2) \AA
$\beta=116.121$ (4) ${ }^{\circ}$

Data collection

Kuma KM-4 CCD area-detector diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\text {min }}=0.946, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.087$
$S=1.07$
2236 reflections
$V=1519.67(9) \AA^{3}$
$Z=6$
Mo $K \alpha$ radiation
$\mu=0.50 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.3 \times 0.2 \times 0.05 \mathrm{~mm}$

18215 measured reflections 6187 independent reflections 4162 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

382 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

$$
\begin{aligned}
& V=1096.36(5) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.46 \mathrm{~mm}^{-1} \\
& T=297 \mathrm{~K} \\
& 0.2 \times 0.1 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

12975 measured reflections 2236 independent reflections 1960 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ},{ }^{\circ}$) for (F1).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 44-\mathrm{H} 44 \cdots 5^{\mathrm{i}}$	0.93	2.59	$3.219(2)$	125

Symmetry code: (i) $x-1, y, z$.

Table 3
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$ for (F2).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 46-\mathrm{H} 46 \cdots \mathrm{O} 5^{\mathrm{i}}$	0.93	2.53	$3.385(3)$	153
Symmetry code: $(\mathrm{i})-x+1, y,-z+\frac{3}{2}$.				

Compound (F2)

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=272.35$
Monoclinic, C2/c
$a=23.111$ (2) A
$b=7.5812$ (7) \AA
$c=15.6547(14) \AA$
$\beta=115.430$ (2) ${ }^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.516, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.126$
$S=1.03$
3051 reflections
$V=2477.1(4) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.43 \mathrm{~mm}^{-1}$
$T=270 \mathrm{~K}$
$0.5 \times 0.2 \times 0.1 \mathrm{~mm}$
.
27591 measured reflections
3051 independent reflections
2351 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$

Compound (G1)

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}_{2} \\
& M_{r}=242.32 \\
& \text { Monoclinic, } P 2_{1} \\
& a=4.0900(4) \AA \\
& b=6.4482(6) \AA \\
& c=20.7828(19) \AA \\
& \beta=91.151(2)^{\circ}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min }=0.716, T_{\max }=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.68 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), with 1175 Friedel pairs
Flack parameter: 0.18 (11)

Table 4
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (G1).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3 $\cdots \mathrm{S} 1^{\mathrm{i}}$	0.86	2.85	$3.473(3)$	131
$\mathrm{C} 43-\mathrm{H} 43 \cdots 5^{\mathrm{ii}}$	0.93	2.37	$3.297(4)$	179

Symmetry codes: (i) $x-1, y, z$; (ii) $x-1, y-1, z$.

Table 5
Selected bond lengths (\AA) and torsion angles $\left({ }^{\circ}\right)$ for the title compounds.

Structure	$\mathrm{N} 2-\mathrm{N} 3$	$\mathrm{~N} 3-\mathrm{C} 4$	$\mathrm{C} 4-\mathrm{C} 41$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 4$
$(E 1)$	$1.377(2)$	$1.338(2)$	$1.494(3)$	$176.6(2)$
$(E 1)$	$1.372(2)$	$1.333(2)$	$1.493(2)$	$-178.79(19)$
$(E 1)$	$1.382(2)$	$1.322(3)$	$1.498(3)$	$179.6(2)$
$(F 1)$	$1.3785(17)$	$1.344(2)$	$1.502(2)$	$177.07(15)$
$(F 2)$	$1.3839(19)$	$1.342(2)$	$1.499(2)$	$-177.06(16)$
$(G 1)$	$1.395(3)$	$1.341(4)$	$1.497(4)$	$-121.9(3)$

Table 6
Intramolecular hydrogen-bond contact geometry $\left(\AA,{ }^{\circ}\right)$ for the title compounds.

$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{~N} 42$	$\mathrm{H} \cdots \mathrm{N}$	$\mathrm{N} \cdots \mathrm{N}$	$\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$
$(E 1)$	2.25	$2.641(2)$	
$(E 1)$	2.25	$2.648(2)$	108
$(E 1)$	2.27	$2.663(3)$	109
$(F 1)$	2.21	$2.625(2)$	108
$(F 2)$	2.25	$2.652(2)$	110
$(G 1)$	2.28	$2.666(4)$	108
			107
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{~S}$	$\mathrm{H} \cdots \mathrm{S}$	$\mathrm{N} \cdots \mathrm{S}$	$\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$
$(E 1)$	2.54	$2.9228(18)$	108
$(E 1)$	2.50	$2.9031(16)$	109
$(E 1)$	2.55	$2.9305(19)$	108
$(F 1)$	2.43	$2.8775(14)$	113
$(F 2)$		$2.8587(18)$	112

H atoms were located in difference Fourier maps and subsequently geometrically optimized and allowed for as riding atoms, with $\mathrm{C}-\mathrm{H}=$ $0.95 \AA$ for aromatic CH groups, $0.97 \AA$ for secondary CH_{2} groups and $0.96 \AA$ for methyl groups, and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. For $(G 1)$, the precision of the Flack x parameter [Flack (1983); $x=0.18$ (11)], whether calculated by the 'hole-in-one' method or using TWIN/BASF in SHELXL97 (Sheldrick, 2008), indicated that the structure was correctly oriented with respect to the polar-axis direction, but was too imprecise to rule out the possibility of partial inversion twinning. However, the value of the Hooft y parameter [Hooft et al. (2008); $y=0.20$ (2)] certainly suggests that partial inversion twinning is present.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007) for (E1) and ($F 1$); APEX2 (Bruker, 2002) for ($F 2$) and (G1). Cell refinement: CrysAlis RED (Oxford Diffraction, 2007) for (E1) and (F1); SAINTPlus (Bruker, 2003) for (F2) and (G1). Data reduction: CrysAlis RED for (E1) and (F1); SAINT-Plus for (F2) and (G1). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) for (E1) and (G1); SHELXTL (Sheldrick, 2008) for (F1) and (F2). For all compounds, molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON.

This study was supported by the Ministry of Science and Higher Education under project No. N204 111735.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3386). Services for accessing these data are described at the back of the journal.

organic compounds

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bilton, C., Allen, F. H., Shields, G. P. \& Howard, J. A. K. (2000). Acta Cryst. B56, 849-856.
Bruker (2002). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT-Plus (Version 6.45) and SMART (Version 5.629). Bruker AXS Inc., Madison, Wisconsin, USA
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Foks, H., Mieczkowska, J. \& Sitarz, M. (2000). Phosphorus Sulfur Silicon Relat. Elem. 158, 107-116.
Galek, P. T. A., Fábián, L. \& Allen, F. H. (2010). Acta Cryst. B66, 237-252.
Główka, M. L., Martynowski, D., Olczak, A., Orlewska, C., Foks, H., Bojarska, J., Szczesio, M. \& Gołka, J. (2005). J. Chem. Crystallogr. 35, 477-480.

Gobis, K., Foks, H., Żuralska, A. \& Kędzia, A. (2006). Heterocycles, 68, 26152626.

Gobis, K., Foks, H., Zwolska, Z. \& Augustynowicz-Kopeć, E. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 965-975.
Hooft, R. W. W., Straver, L. H. \& Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Olczak, A., Główka, M. L., Gołka, J., Szczesio, M., Bojarska, J., Kozłowska, K., Foks, H. \& Orlewska, C. (2007). J. Mol. Struct. 830, 171-175.
Olczak, A., Szczesio, M., Gołka, J., Orlewska, C., Gobis, K., Foks, H. \& Główka, M. L. (2011). Acta Cryst. C67, o37-o42.
Orlewska, C., Foks, H., Sowiński, P., Martynowski, D., Olczak, A. \& Główka, M. L. (2001). Pol. J. Chem. 75, 1237-1245.

Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Oxford Diffraction (2010). CrysAlis PRO. Version 1.171.33.66. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wang, F., Langley, R., Gulten, G., Dover, L. G., Besra, G. S., Jacobs, W. R. Jr \& Sacchettini, J. C. (2007). J. Exp. Med. 204, 73-78.
Wood, P. A., Allen, F. H. \& Pidcock, E. (2009). CrystEngComm, 11, 15631571.

[^0]: ${ }^{1}$ For Part II, see Olczak et al. (2011).

